
Pergamon 
J. AppL Maths Mechs, Vol. 62, No. 5, pp. 749-762, 1998 

O 1999 Elsevier Science Ltd 
All rights reserved. Printed in Great Britain 

PH: S0021-8928(98)00096-3 0021-8928/98/$--see front matter 

SEEPAGE REFRACTION IN A SEMICIRCULAR LENS 
LOCATED AT THE BOUNDARY OF 

TWO POROUS MASSIFSt 

Yu. V. O B N O S O V  

Kazan' 

(Received 14 November 1995) 

The problem of calculating the two-dimensional seepage field in a structurally inhomogeneous three-component medium in the 
form of two infinitely porous massifs with a semicircular inclusion in their plane boundary of contact is considered. The distribution 
of the seepage rate, when two matching conditions along the lines of contact of unlike zones are strictly satisfied, is obtained in 
dosed analytic form by methods of complex analysis. Limiting cases of the conduction of the components of the medium and 
eases of the degeneration of a three-component medium into a two-component medium are considered. © 1999 Elsevier Science 
Ltd. All fights reserved. 

In seepage problems, it is important to find the distribution of the flow rate and on the basis of this, to 
estimate the local stability along the joining lines of porous media of differing coarseness and of natural 
or artificial origin (the stratified zones of inhomogeneity, the centres of embankments, screens, reverse 
filters, etc.) [1, 2]. There are very few strictly accurate solutions of such problems in the ease of structures 
which are pieeewise-homogeneous with respect to their permeability. The application of the technique 
of boundary-value problems in the theory of analytic functions to seepage problems in inhomogeneous 
media was initiated by Polubarinova-Kochina and her disciples [3], who considered flow patterns 
under the apron of a dam in a multilayered earth, flows in a reservoir with circular and elliptic inclusions, 
etc. 

Below, we develop the ideas proposed in [3] and [4--8] as applied to a seepage scheme in a three- 
component medium consisting of two porous massifs and a semicircular lens on their contact boundary. 
At infinity, the seepage rate vector in one of the two massifs is specified to be V0 - (Vo~, V0y). In practice, 
such a situation occurs in the body of earth reservoirs where the foundations are laid layer by layer and 
the lens simulates one of the possible defects in such a stacking [2]. When there is no lens, the flow is 
linear with refraction along the contact boundary between the two half-planes. Generally speaking, the 
lens leads to the occurrence of a two-dimensional field in all three media. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

It is well known [3] that the problem of plane steady-state seepage in accordance with Darcy's law 
in a medium for which the seepage coefficient k(x, y) is a piecewise-constant function (k(x, y) - kj --- 
eonst when (x, y)~Dj) is described by Laplace's equation for the pressure head h(x, y) = hi(x, y), 
(x, y) ~_Dj in the zones of homogeneity Dj 

Ahj(x ,y)=O 

and the matching conditions 

h~ = h=, 0h~ / 0s = Oh., / 0s 

along the contact boundary between the dissimilar zones Dj and Dm. The following problem is obtained 
by introducing the complex variable of the physical plane of flow z = x + iy, the complex potential 
w(z) -- tp + i¥ 0P = --kh is the potential and V is the stream function which is harmonically conjugate 
to tp) and the seepage rate vector v = (vx, Oy) = Ux + ivy =dw/dz = -kVh in relation to the latter potential 
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Fig. 1. 

d i v v = 0 ,  r o t v = 0 ,  zcD/ 
(vj) .  = ( v . ) , ,  (v j ) , / k j  = (v.)~ Ikm, z edDj c~ODm 

The first two of these equalities indicate that the function o(z) = ox--iuy, which is the complex conjugate 
of the. vector, v(z) = Ox + ioy, is holomorphic. . in D., and the second pair of equalities expresses the 
contmmty of the normal and the proportlonahty of t~e tangential constituent components of the vector 
v along the boundary separation of the zones with different conduction coefficients. 

It is well known that corresponding problems in the theory of heterogeneous media in electrodynamics [9, 10] 
(v is the actual density vector and k is the electrical conductivity, a quantity which is the reciprocal of the resistivity 
of the medium), in magnetodynamics [11] (v is the electric field strength vector and k is the magnetic permeance), 
in problems of the antiplane deformation theory of elasticity [12, 13] (h is the displacement and k is the shear 
modulus, in diffusion theories [14] (h is the concentration and k is the diffusion eoeflieient, heat conduction [15] 
(v is the thermal flux vector and k is the thermal conductivity), etc. lead to exactly the same mathematical model. 

The problem under consideration is equivalent [9] to the problem of R-linear union (this is also 
referred to as the generalized Riemann problem or the Markushevich problem). In the situation being 
considered here this problem consists of constructing a function o(z) = o/(z) = o~,(x, y) - io~.(x, y), 
z~Dj,  (j = 1, 2, 3) which . . . .  is holomorphlc m each of the homogeneous components" D, (Fig. "1) and 

. . . . .  J 

continuous m thetr closure everywhere with the exception of perhaps just the corner points z = ± 1, 
where the existence of integrable singularities is permitted, using the boundary condition 

u, ( t )  = Au 2(0  + Bt-2u2(t), t E 1 = {t:ltl= 1, Im t > 0} (1.1) 

u3(x)  = Al.z~l .2(x)-  BI,2Ul.2(x), x ~ D  3 ~ D I .  2 \ {-1,1} 

In addition to this condition, it is specified that 

02(**)= Vo = Vox -iVo: (1.2) 

The notation 

k a + kt. 2 A =  kt + k2 B = I - A ;  Ai. 2=  , ~.2 = l - A I ,  2 (1.3) 
2k 2 ' 2kt. 2 

is used in (1.1), where k/is the seepage coefficient of the medium Dj. 
Below, we shall carry out a full investigation of problem (1.1)-(1.3) and construct, in explicit analytic 

form, expressions for the seepage rate vector and the complex potential without constraints of any kind 
on the values of the conductance of the components of the medium and with an arbitrarily orientated 
external field vector. 

2. T H E  S O L U T I O N  OF P R O B L E M  (1 .1 ) ,  (1 .2)  IN  N O N - L I M I T I N G  
A N D  N O N - D E G E N E R A T E  CASES 

It is assumed everywhere in this section that k~ ~ 0, oo and k~ # km whenj  ~ m (/', m = 1, 2, 3), that 
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is, both the cases when the medium contains ideally draining or water-impermeable components and 
when the three-component medium in question degenerates into a two-component medium are 
temporarily excluded from the treatment. With the assumptions which have been made, it is obvious 
that the quantities 

A = B I A ,  Aj. 2=I~.21Ai. 2 (2.1) 

satisfy the inequalities: 0 < l a I, IA1,21 < 1. 
Suppose/9/* is a domain which is symmetric with the domain/9/with respect to the real axis. It is 

clear that each of the functions 

fAI.2U 1.2 (Z), Z e Di. 2 (2.2) 
6,2{z) =/~3{z)  + nl,2o,.2{z), z G o~,~ 

is holomorphic in the corresponding union D/u/9/* and continuous when x e OD1, 2 :~ 0D~',2\{-1, 1} 
since F~,z(x) = Al~vl,2(x) = v3(x) + Blavl~(x)  = F~,2(x) by virtue of (1.1). This means that the 
function Fl(z)  is holomorphic in the unit circle D + = {z: I z [ < 1} and that F2(z) is holomorphic in 
D - =  {z: I z l  < 1}. 

By virtue of (2.1) and (2.2) 

oj(z)=~(z)/aj, zGOj, 
o3(z)=Fj(z)-AjFj('Z), zeD~.,  j=l,2 (2.3) 

It follows from (1.1), (1.2), (2.1) and (2.3) and the equality t~(t)+ = v~(t), which holds on the semicircle 
I* = {t: I t ] = I, Im t < 0}, that the function F(z) = {F1(z), z~D ; F2(z), zeD-} satisfies the conditions 

F+(t) = AiA~i[AF-( t )+ Bt -2 F-(t'-~)], t e I (2.4) 

F+(t)- A, F+('t) = F-(t)- A 2 F-(t), t e I" 

F(~) = A2V o (2.5) 

Using relations (2.4) and the relations obtained from them by replacing t by t and the complex 
conjugation above the initial and transformed equalities, it is possible to show that the vector function 
@(z) with the components 

~(z) = F(z), ¢~(z) = F(~), 

satisfies the boundary condition 

@+(t) = G(t)O-(t), t ¢ l; 

The non-degenerate matrix G(t) has the form 

q~(z) = F(I Iz) ,  @4(z) = F{I Iz) (2.6) 

O+(t) = P G ( t ) l ~ - ( t ) ,  t e l* 

oo-; i G(t )=  - I 0 it -2 
- 2/2 0 1 

l -A: 0 0 s, I 

(2.7) 

det G(t) = 1 (2.8) 

P is the permutation matrix 

6 , = I + M , ,  6 2 - = ! - M  2 (2.9) 

Henceforth, in carrying out the corresponding calculations, it is convenient to use the following 
pairwise-equivalent identities 
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AAIA 2 ---- A + AI - A2 (2.11) 

A;~ - A  " ! -  AA2, A~ +A wI+AA! (2.12) 
AI A 2 

which follow from (1.3) and (2.1). It follows from definitions (2.6) that it is necessary to solve problem 
(2.7) in the class of vector-functions which satisfy any two of the three conditions 

dp(z) -- P ~ z ) ,  ¢I)(l l z) E Q~p(z), (I~(llz)=Rq)(z) (2.13) 

where Q and R, as well as P, are permutation matrices 

o-I  ;I, ,-I,  l,-r,1 
Integrable singularities are permitted at the points z = -4-1 in the case of the components of @(z). 

Moreover, by virtue of (2.5) and (2.6) 

~[)1 (*0) ---- ~ 2 ( c o )  = (I:)3 (0 )  -'- (I:)4 ( 0 )  = A2V0 (2.15) 

Using the substitutions 

~PI.2(Z) -- ~ l ,2 (Z) ,  ~3.4(Z)-- ~] t~3,4(Z) (2.16) 
Z 

problem (2.7) can be reduced to a homogeneous Riemann problem in the vector function ~P(z) with 
the components (2.16) 

~+(t)mT~-( t ) ,  t e l ;  ~+( t )=PTl~- ( t ) ,  t e l  + (2.17) 

where 

T = G ( I )  (2.18) 

It follows from (2.16) that the solution of problem (2.17) has to be sought in the class of vector 
functions which, like the function *(z), satisfy conditions (2.13). Moreover, the first two components 
of the vector ~F(z) must have at least a simple zero at the origin of coordinates and a first-order pole 
at infinity, and inverse behaviour in the case of the third and fourth components of ~P(z). In view of 
(2.15) and (2.16) 

- res. pl'~ (z) / z 2) = res o % (z) = A2 V o (2.19) 

-res= (S'2 (z)/z 2) = re.so 'P4 (z) = .42% 

On taking account of the equalities T q --- RTR,  (PTP) -] = QTQ, which are easily verified using (2.1), 
(2.14) and (2.18), by means of the substitution 

IT(z), z e D + (2.20) 
II(z) = [ P T t ~ ( z ) ,  z e D- 

we reduce problem (2.17) to the following 

ft+(t) = SO-(t) ,  t e I (2.21) 

where, by virtue of (2.14) and (2.18), the matrix S = TQTQ has the form 

Ii - A(81 .+.82- l ) 82-82-A 2 A [ 
l "4- 8f -- 8! -- A 2 -A(81 + 82 -- l) 81 - l (2.22) 

S= 1 A(6~+62-1) ] + 6 2 2 - 8 2 - a  2 ,S 
8 2 - 8~ - a 2 -t,(8~ + 82 - 1) 8, 
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Consequently, the vector function f~(z) is holomorphic in the z plane with a cut along the semi- 
circle I, in which it satisfies boundary condition (2.21) with a non-degenerate matrix (2.22) 
(det S = (det 7) 2 = 1). By virtue of (2.13), (2.16) and (2.18)-(2.20), D(z) must also satisfy the conditions 

[ l ( z ) -  PII(z) ,  1"1(11 z) - PTRfI(z) ,  z E D ÷ (2.23) 

res=tz-2gl(Z)] = A 2 ( ( A ~  o - Vo) , (AA 2 - 1)~0, a~oo, AA2~OO) 

res o I'I(Z) = A2(0,0, Vo~oo,) , reso[z-l l~.2(z)] = 0 (2.24) 

It follows from boundary condition (2.21) and the representation (2.22) that 

f i t ( t )  - c i ;  ( t )  = l l ;  ( t )  - l ' i ;  ( t) ,  

£i~ (t)- i'2~ ( t )  = f i ;  ( t )  - l l ;  ( t) ,  
t e l  

This means that the arc l is not a line of discontinuity in the case of the functions Dl(z) - ~~3(z) and 
f~2(z)-D.4(z). There are integrable and, consequently, removable singular points in the case of  these 
functions at the points z -- ± 1. There are simple poles at zero and infinity in the case of these functions, 
that is, according to the generalized Liouville theorem 

~ l ( z ) - Q 3 ( z ) = a l z  +f~ +'t~ / z 

l l2  ( z ) -  f i4 (z) = a2z + 132 + Y2 / z 

By virtue of relations (2.24) 

~41 (Z) - ~ ( Z )  = A2Vo ' YI = reSo(['~l (z )  - L"23(Z)) = - A 2 V  0 Ot I = - r e s , .  z2 

Using the second relat ion of  (2.23) and (2.14) and (2.18), i t  is possible to obtain that Ol(z)  - ~3(z) 
= ~3(1/z) - ~1(1/z), whence i t  fol lows that ~1 = 0. In  turn, we have 

D ~ m 

i"~! (Z) - i'~3 (Z) = 1"12 (Z) - i'14 (Z) = A 2 Vo(Z - 1 / Z) 

from the first condition of (2.23). 
Thus 

{ ta3(z)=ta~(z)-a2Vo(z-1/z)  
l '24(Z)=fr i2(z) -A2~oo(Z - i / z )  

(2.25) 

On the basis of (2.25) and (2.22), the homogeneous four-dimensional problem (2.21) reduces to a 
two-dimensional inhomogeneous Riemann problem in the vector function W(z) = (Wl(z) ,  W2(z)) = 
(~'~I(Z), ~'~2(Z)) 

W + ( t ) =  MW-( t )+m( t ) ,  t e l  (2.26) 

where the matrix M and the vector re(t) have the form 

u 
M U-~(~1"1"~2)  ~ 2 _ ~ 2  n 

re(t) = 6,42 (t - 1 / t)((&282 + A)V 0 - V 0, (81 + 82 - I)V 0 - A l V 0) 

(2.27) 

(2.28) 

On subtracting the first row of matrix (2.22) from the third row, and the second row from the fourth 
row and then adding the first column to the third column and the second column to the fourth column, 
we obtain det M = det S = 1. Consequently, the modulus of the eigenvalues of the matrix M is equal 
to unity which follows from the estimate 

-2  < - 2 t i  2 < 8  2 + 8  2 - 2 A  2 = 

= 2 [ 1 -  AA 2 +AA,  - A  2 +A2(A 2 + A 2 ) / 2 ]  < 

< 2(1 - AA 2 + AA l) = 211 - A2(1 - AIA2)] < 2 
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which is established using (2.1), (2.11), (2.12) and (2.9). After some algebra, the required eigenvalues 
can be written in the following form 

~h.2 =e±i2'~ = (51 +5~) 2 - l + i ( S t  +52)  1-  
2 (2.29) 

The eigenvector (hi, h2) of matrix (2.27), which corresponds to its first eigenvalue (2.29), found from 
the equation 

(82 - A 2 - tt I )hi + A(Sj + 52)h 2 = 0 

can be taken in the form (f~, h), where 

h=e#rV =l(~/2 + AI + A2 +isign A'~2-AI-A2 ) (2.30) 

The eigenveetor which is the complex conjugate of the eigenvector which has been found corresponds 
to the second eigenvalue (2.29). It is clear that the matrix 

which reduces matrix (2.27) to normal Jordan form is non-degenerate since, by virtue of (2.30), 
0 < [ ~, J < n/2 in the case of the constraints which have been assumed in this section and, consequently, 
det H = -2 / s in (2~)  # 0. 

Hence, after the linear substitution 

W(z) = zHV(z) (2.32) 

problem (2.26) decomposes into the two one-dimensional problems 

Vi + (t) = ~tj V I- (t) + al (t -2 - I), t e I (2.33) 

where 

V~(t) = ~t2V~(t)+a2(t -2 - 1), t e I (2.34) 

a I = -iAA 2 cosec(2nV)e/r'x Re[V o (A 2 h - h)] (2.35) 

a 2 =- iAA 2 cosec(2n3,)e - /~ Re[ V 0 (A2h - h)] (2.36) 

The right-hand sides of representations (2.35) and (2.36) are obtained on the basis of (2.28), (2.31), 
(2.32) and the relation 

h(5! + 52 - I ) -  h(A282 + A) = e i 2 X ) ' ( h  - Aih) 

which follows from equalities (2.9), (2.29) and (2.30). 
It follows from (2.24) and (2.32) that the vector V = (I/1, V2), with components which satisfy the 

conjugation conditions (2.33) and (2.34), must be bounded at zero and take the following value at infinity 

V(oo) = A2 H-I (V o - AV0,52 Vo) (2.37) 

The first condition of (2.23), when applied to the vector V(z) gives 

H V ( z ) - [ :  I ~ H V ( z ) . T t V ( z ) ,  z e D  + 

that is 

V(z) i V(z), z E D ÷ (2.38) 
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Putting the second condition of (2.23) on the side for the present, we find the solution of problems 
(2.33) and (2.34) in the class of functions which satisfy conditions (2.37) and (2.38). 

It is obvious that the single-valued branch of the analytic function 

( l+z]  ~" 
Z(z) = kl--2"z) (x(O) = I) (2.39) 

which is fixed in the domain C//, satisfies boundary condition (2.33) when a I = 0. Consequently, 
the inhomogeneous problem (2.33) reduces to a problem on a discontinuity in the function Vl(z)z-l(z) 

~ + ( t )  Vl-(t) + a I i - t  2 
= ~ t e l  (2.40) 

X÷(t) ~-(t) ~÷(t) t 2 ' 

A particular solution of problem (2.40) gives an integral of the Cauchy type 

i ! l i t  2-1 dt (2 .41)  
i(z)=-~ni X+(t) t - z  

multiplied by the constant al. We now consider the auxiliary integral 

• ! l i t  2-1 tit 
t (z)=g=7... I 

2,~l~l_ ~(t) t - z  

On the one hand, the equality l*(z) = I(z) (1 - d 2~;~) holds since Z-(t) = exp (-/2~.)Z+(t). On the 
other hand, by Cauchy's theorem on residues, the integral I*(z) is equal to the sum of the residues of 
the integrand t0(t; z) at the points t = 0, t = z and t = 0% where, in the case of this integrand, there is 
a second order pole, a simple pole and a simple zero respectively. We find by standard methods 

reso~0= 22tz-.__.~l restto= l / z 2 - 1  res.to=e~t x 
? " Xfz--'-'S-" 

In calculating the last residue, use is made of the fact that, at infinity, the chosen branch of the functions 
(2.39) takes the value 

X(**) = e-n~x (2.42) 

Hence 

I - e  [ - ~(z) z 'T~Z(z) - l+2kz  (2.43) 

In the neighbourhood of the zero for the chosen branch of the function z-l(z), the following Taylor 
series expansion holds 

)~-I (Z)  = 1 - 2~L~ + 2~,2Z2 + , . .  

This means that function (2.43) is holomorphic at zero and, by virtue of (2.42), it vanishes at infinity 
as must be the case. 

Since 0 < ~. < 1/2, then, consequently, the product Vl(z)z-l(z) will have a removable singularity at 
the point z = 1 and, perhaps, just a simple pole at the point z = -1. This means that 

¢ ' '  

where c11, c12 are arbitrary complex constants. 
By virtue of (2.38), the function (2.44) must satisfy the condition 

v~ (z)  = v~(z), z e O ÷ 

(2.44) 

Since the identity 
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~ (z ) ,  z E D ÷ 
2(,(Z)" [ei21a.2~(Z) ' Z E D- (2.45) 

holds for the chosen branch Z(z), then, by virtue of (2.43) and (2.44), in order to satisfy the last condition 
it is necessary that the following equalities should hold 

1. Im[a t (1 - e -i2xk)] = 0; 2. Im Cll = 0; 3. lm cl2 + al ~ = 0 

Moreover, in view of (2.42)--(2.44) and (2.37), we must have 

i cosec(2~)(hV 0 - (Ah + 82h)~00) 4. V t (**) = c12 e-i~ = -~ A 2 

It is obvious that the first of these conditions is satisfied since, by virtue of (2.35) 

a I 2A2 Re[ (A2~_ h)Vo ] 
i _ e / T ~ -  4 _ ( A  i +A2) 2 

Using representations (2.29) and (2.30) and the relations 

2 (2.46) 

ei2~r/= A! + A  2 + i s i g n A  I -  
2 

e/~X h2-A2 h 2 _ A 2 K 2 _A I 

= h 2 _ A  t = - h 2 _ - ~ 2  = -  h 2 _ A  I 

which follow from them, it can be shown that the remaining necessary equalities 2-4 will hold if one 
puts 

cl2 = A2e ir'x/2 cosec(21ry)Im(e-na'/2hV0), c1| = c! ~ R 

After some simplifications using relations (2.9) and (2.46), the required solution of problem (2.33) 
can now be written in the form 

Va(z) =a(V°~ 1 - ~ + X(z~ I - 2-~kz 

where 

' z+,]} +~-+ (2.47) 

a(V o) = (A 2 / 2) scc(gk / 2) cosec(2~'y) Im(e -/¢tt 2hV 0 ) 

It can be shown in a similar manner that 

1 1 2~, i c 2 

(2.48) 

(2.49) 

which is defined by relations (2.32) and (2.25), satisfies the second condition of (2.23). In order to do 
this, it is sufficient to require, for example, that the components of the vector ¢(z) 

tl(z) = (zHV(z), zHV(z ) -  a2 ( z -  1/ z)(Vo, Vo)) 

will be the corresponding solution of problem (2.34) with free term (2.36). 
The arbitrary real constants cl, Cz in representations (2.47) and (2.49) have to be chosen in such a 

manner that the vector function 
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'h Vt{z} + hV2{z ), 

O l ( Z )  = eix~.'£VI(Z)+e-ir&hv2(Z}+VoA2AA2(I__.~], 

_ fZ  2 [h'Vi (z) + hV 2 ( z ) ]  + VoA 2 (1 - z 2 ),  

03(z)  - ~z2[ei'~KVI (z) + e-i~hV2 ( z ) ]  + VoA282 (1 - z 2 ), 

z¢ D + 

zED-  

z ¢ D  + 
z~D-  

which have been found using the last equality and relations (2.20) and (2.16), should satisfy the condition 
O1(1/z) ~- O3(z) in accordance with definition (2.6). On writing out this identity in explicit form for 
z ~ D" ,  using (2.47)-(2.49) and taking account of the last representations and the identity 

Z ( l / z ) -  ' z~'D+ 
z ~ D- (2.50) 

we obtain cl = c2 = 0, if, after all the reductions, one compares the coefficients of the homogeneous 
terms and, in particular, the coefficients of the terms zz(z) and z}{-'(z). 

When account is taken of representations (2.3), (2.6) and (2.39) and the identity (2.45), it can be 
shown that, in all non-limiting and non-degenerate cases, the unique solution of problem (1.1), (1.2) 
is found using the formulae 

v l (z)=  2kl [e-i~Vj(z)+eimV2(z)] 
k I + k 3 

2k2 [ei,{7,-,}VI(z)+ e-iXtX-,}V2(z)]+ VoAA2(I__.~ ) 
V2(Z)= k2 +k 3 

o 3(z) = (e -i~ - Ale irt )VI (z) + (e i~ - Ale -im)V 2 (z)] (2.51) 

Vl(z)= a(Vo){1--~ + Z(z(l - 2~kz +--~] } 

V2(z )=a(~o~l_ l+ 1._!_[1+2X+ 1]~ 
z(z)L T F]J 

and, in turn, if Vo = I Vo[e-i% then 

a(Vo) = k 2 +k  3 IV o I s in [~(y-X/2  +{z)] 
4k 2 cos(~l. / 2) sin(2n'/) 

k = l a r c c ° s (  I + A  Aj -A2 ) 2  ' Y = signA2~ arccos AJ+A22 

A =  k 2 -  kt A I k l -  ks A 2 k 2 -  k3 
k 2 +k  I ' = kt +k 3 ' = k2 +k 3 

Remark 1. We recall that the functions oj(z) which have been found are complex conjugate with the values of 
the true seepage rates uj(z). Working with the above formulae, it is necessary to take account of the fact that, first, 
the inequalities 

0 < arg X < x X / 2 ,  - 3~XI 2 < arg X < -r,&, - ~ < argZ < 0, 

hold when z e D1, z ¢ D2 and z ~ D3 respectively for the chosen branch of the multivalued function (2.39) in 
accordance with the method of setting it and, second, the following Taylor series expansions hold 

Z(Z)=I+2~.z+2X2Z2+ (I+2X2)Z3 + (2+~.2)z4 + .... Izl<! 

X(z) = e-/~(l + 2J~.z -I + 2~.2z -2 + -~(1 + 2X 2 )z -3 +...), I z I> 1 

The expansion in the corresponding Taylor series for the function Z-l(z) is obtained from this by simply replacing 
X by -X. 

Remark 2. The complex potential w(z) = wj(z), z ~ Dy, (j = 1, 2, 3) 
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wl(z) = . 2kl. [e-irfWl(z)+eirfW2(z)l 
gl +/c3 

w 2 (Z) = . 2k2. [ein(k-'t)Wl (Z) + e-~(k-¥)W2 (z)] + VoAA 2 fZ + l ~  (2.52) 

w3(Z) = (e- / r t  _ AI e/r/)Wi (Z)+(e irt - Ale-/~'t)W2 (z) ] 

W,(z)= a(Vo){z + ¼ + X(z)(z-I )} 

is easily re-established by the integration of formulae (2.51). 

The eases of degeneration of the three-component medium into a two-component medium (kj = 
kin) as well as the limiting cases when at least one of the components of the medium Dy is an ideally 
conducting medium (k. = m) or an impermeable medium (k. = 0), which are of interest from the point 

. J .  . . :1 
of view of seepage applications, are considered below. 

3. T H E  S O L U T I O N  O F  P R O B L E M  ( 1 . 1 ) ,  ( 1 . 2 )  I N  D E G E N E R A T E  C A S E S  

In almost all of the situations which are investigated in this and the following sections, with the 
exception of those which are specially mentioned, the required solutions and the corresponding complex 
potential can be obtained using formulae (2.51) and (2.52) by taking the limit in relations (1.3), (2.1), 
(2.9), (2.30), (2.39), (2.46) and (2.48). Hence, as a rule, in each actual case only the final result of taking 
the limit in the above mentioned formulae will be indicated. 

3.1.A single semicircular inclusion. It is obvious that the medium shown in Fig. 2(a) is obtained from 
the three-component medium considered above when k 2 = k 3. It extends the well-known scheme with 
a circular inclusion [3] and, in view of the existence of a second geometrical parameter (the angle of 
inclination of the base of the inclusion to the external flow vector) in addition to the radius, it can serve 
to construct stochastic models of the classical Maxwellian effective medium type [16]. 

I f  k2 = k3, t h e n A 2  = 1, A 2 = 0, A 1 = -A,  81 = 1 - A 2, 82 = 1 a n d  

~ . = 4 y - s i g n A =  areco 1-  a(Vo)= ~ (3.1) 

Here, it is obvious that h - Alh = hexp(in)~) and this means that o2(z) - u3(z), which must be so in the 
g iven  case .  

3.2. The problem of a semicircular groove. On putting kl = k3, we arrive at the two-component 
porous medium shown in Fig. 2(b). Such a medium can be considered when simulating the process of 
channel-shaped undermining [17] when the groove simulates an incipient erosion finger. 

Here, A1 = 1 , A  2 = A , A  1 = 0, A 2 = A, 81 = 1 ,82 = 1-A2 and 

~ .=s ignA_4 T = 1 arccosfl A2 ~. -,v, A 
Re(h3Vo) 

~ [ , - " ~ - f  u ~ , 0 j = - , ~  4 _ A 2  (3.2) 

(a) (b) (c) 

Fig. 2. 
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(The identity u](z) -= u3(z) is obvious in this case.) 

3.3. Theproblem o f  two half-planes. In the simplest case (Fig. 2c) when kl -- k2, it is easy to obtain 
A1 = A2, A = 0, A1 = A2, 81 = 82 = 1, Z, = 0 and, as it also must be [3] 

t t l (Z)  --=V2(Z) == Vo, I/3(Z) -= k3l lox/k  I --/VOy 

4. T H E  S O L U T I O N  OF P R O B L E M  (1.1),  (1.2) IN L I M I T I N G  CASES 

It should be noted that, in the theory of seepage, the coefficient of proportionality kj in Darcy's law 
has an upper limit. Hence, in the case of a value of kiwhich is above the limiting value, it is customary 
not to consider the seepage in the corresponding component Dj, but to take the boundary of this com- 
ponent as an equipotential. However, in other sections of the theory of heterogeneous media, large 
values of the conductivity are permissible and the field in an ideally conducting component may be of 
interest. 

4.1. The cases when k I = 0, oo. 
( a )  k l  = oo, k2 * k3, k23 * 0,  oo: 
A1 = 1/2, A = - A  1 = -1, 81 ----- 0, 8 2 -=-- 1 + A 2 

1 I + A 2 e ~ _  ~, = -2y  = -- arccos , a (Vo)  = 2A2 I m (  (4.1) 
;t 2 (3 + A 2)~/1 - A 2 

(a').kl = oo, k 2 = k 3 * 0, oo: A 2 = 1, A 2 = 0 and it follows from (4.1) that  X = -2), = 1/3, a(Vo) = 
2Im(e~=°V0)/3 exactly as in (3.1) 

(b) kl = O, k 2 # k3, (k2, 3 ~: O, oo): 
A1 = oo, A = -A1 = -1, 8] = 0, 82 = 1 + A 2 

1 1 - A 2 2A 2 Re(e/=X Vo) 
X =  ! -2~, =--arccos , a(Vo) = 

;t 2 (3 -  A 2) l + f f ~  2 
(4.2) 

(b') kl = 0, k 2 = k 3 ~ 0, oo: Ul(Z ) ~- 0, A 2 = 1, A2 = 0 and, by virtue of (4.2), X = ), = 1/3, a(Vo) = 
2Re(eia3Vo)/3. 

4.2. The cases when k2 = 0, oo. 
(a) k 2 = 0% k I ~ k3, kl. 3 ;e 0, 0o: 
A = A 1  = 1/2, A = A 2 = 1, 81 = 1 + A1, 82 = 0 

! 1 + A  t I m  V o ~, = 2 ¥  = - -  arccos  , a(V o) = ( 4 . 3 )  
~r 2 (3+At)  I ~ - A  1 

(a') k2 = oo, kl = k3 * 0, oo: from (3.2) and from (4.3) it equally follows that k = 2), = 1/3, a(Vo) = 
ImV0/3. 

(b) In the case when k2 = 0, kl ~ k3, kl. 3 * 0, oo, the solution of the corresponding boundary-value 
problem cannot be obtained by directly taking the limit, which is completely understandable in view of 
the fact that the physical meaning in this situation must be v2 - 0 and this contradicts condition 
(1.2). Such a difficulty would not arise if one were to specify that 03(oo) = l~0 = l ~  - i l ~  instead 
of (1.2). In the general case, it follows from (1.1) and (1.2) that V0 = k2V*or/k3 - i I ~ .  In particular, if 
V0y = ~ = 0, then V 0 = V0x = k21~/k3. On now replacing V0 by k2V*ox/k3 in all the formulae and taking 
the limit when k2 --> 0, it can be found that A = A 2 = -1 ,A = A2 = oo, 81 = 1 - At ,  8 2 = 0 

) I-A, vL 
~. = 1 + 2y = --arccos , a(Vo) = (4.4) 

n 2 (3  - a~ ) I + ~ / ] ~ t  

(b') In turn, formulae (4.4) when k 2 = O and kl = k3 ~ 0, oo give: A1 = O and X = -ff = 1/3, a(Vo) = 
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4.3. The cases when k3 = 0, oo. 
(a) In the limit when k3 ~ ~, kl :~ k2, kl,2 ~: 

k3Reol,2(x ) -- kl, 2Reo3(x ) = X ~ ODI, 2 >>" ~D3 
0, ~, Reth~(x) = 0 follows from the condition that 

v 2 (**)  = Vo = -iVoy (4.5) 

It is obvious that the functions 

l u l2(z)  . . . . .  zGD~,2 
6.2(z) = t..vl,2(~), z E Di'.2 

are holomorphic in the domains D +, D-, respectively, and that the function 

l ~ A t ( z ) ,  

[ kl z 
F~(1/E), 

z G D  + 

z ~ D -  

is holomorphic in the extended plane z in view of the boundary equality 

k .  k_  
o2(t) = =7-tv,(t)- Bt-2o ,(t) ,  I t  ,= l 

Ic! gl 

which follows from the first boundary condition of (1.1). According to Liouville's theorem, F(z) =- const. 
and, by virtue of (4.5) 

VI(Z ) = -iV0y(I - A), V2(Z) = -iVoy(l + AZ -2) (4.6) 

It is possible to arrive at the same result if, starting out from the corresponding formulae in 
Section 2, it is shown that 

lim A~la(Vo)= V°y(l - A) sign A, lim A~'a(Vo)= V°y( l+A)s ignA 
t3 ~** 4 k3 ~** 4 

and account is taken of the fact that A1 = A2 = - 1 ,  X = 0, 21, = signA. 
The field in the half-plane D3 can be found by solving the Schwartz boundary-value problem 

Irnv3(x) = Imv j (x) ,  x E OD/["IOD 3, j = 1, 2 

the free term of which is determined by the equalities (4.6). Omitting the calculations, we merely present 
the final result 

(a) (b) 
Z xxx~ \ 

- !  

0 - I  0 ! 2 - I  0 1 2 

Fig. 3. 
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f Art"  ?-rl 
u 3(Z): -iVoy ~ l -  A + - ' i l l  + +--'~ 

/=Lk z') l+z zJJ t 
(4.7) 

(under the logarithm, the vanishing branch, fixed in D3, is understood). We note that the corresponding 
complex potential in the case being considered will have the form 

W I (Z) = --iV0y(I -- A)Z, W2(Z) = -iVoy(Z - AZ -I ) 

w 3 ( z ) = - i V o v { ( l - A ) z + A ( z  l ')ln l - z  ~ 
• . 

(a') Ilk3 = ~ and kt = k2 ~ 0, oo then A = 0, and it follows from (4.6) and (4.7) that ul - I . ) 2  ~ D 3  ~ - -  iVo~. 
(b) When k3 = 0, kl ~ k2, kl, 2 * 0, ~, it is obvious that the conditions Imuj(x) = 0 (] = 1, 2, 3) must 

be satisfied. This means that o3(z) - 0 and 02® = V0x. As in case (a) we find 

u l ( z ) =  Vox(l-A), u2(z )=  Vox(1-Az -2) (4.8) 

(b') In the trivial case when k3 = 0 and kt = k2, it follows from (4.8) that ut ---- v2 --= V0x. 
The exact solutions which have been obtained enable us to reproduce the structure of the seepage 

field in the domain where it is substantially two-dimensional. The stream lines and equipotential lines 
(the solid curves and the dotted curves, respectively) are shown in Fig. 3(a, b) in the case when the 
external field is orientated at an angle of 45* to the abscissa. In the case of the draining lens (k] = 10, 
k2 = 0.6, k3 = 1, Fig. 3a), the behaviour of the stream lie a -a ,  which makes a "loop" close to the angle 
of the lens, is interesting. In the case of a weakly permeable barrier (kl = 0.01, k2 = k3 = 1, Fig. 3b), 
the behaviour of the stream line a--a, which "separates" in the rear part of the lens (the point a0), should 
be noted. 

We emphasize that standard methods of the finite-element type or the method of finite differences, which are 
based on numerical differentiation of the mesh point values of the support, are bad at describing such non-trivial 
effects [18]. The technique of tracking labelled particles, which has been used above, enables one to start from 
any point in a medium, and the errors which arise in the numerical integration of the system of two differential 
equations with specified, analytic right-hand sides can also be estimated analytically. Although the domains of non- 
trivial distribution of the flow parameters are small and, globally, the behaviour of the field satisfies that which is 
intuitively expected, the real refraction picture also enables one to estimate the validity of the packages of 
approximate models, for example, the condition that the substrate in the problem of the dissipation of heat from 
a finned surface should be isothermal [18, 19]. Such distributions as isotachs [3], isochrones [20] and advective 
transfer concentration curves [21] (which are easily constructed using the solution which has been obtained) can 
be employed for geomeehanical and hydrogeological analysis. For example, the velocity distribution along a 
semicircle ("a centre of erosion") is important when describing the formation of the dendritic structures of 
"undermining fingers" [17]. In models of convective diffusion [22], it is important to evaluate the validity of the 
asymptotic forms and of the approximate models of the Numerov-Patrashev type by estimating the dimensions 
of the zones of extremely non-constant velocity. The integral characteristics are also of interest, namely, the total 
dissipation, the effective conductance, the total mass flow from the lens etc. However, these questions are outside 
the scope of this paper. 
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